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On Fractionally Integrated L ogistic
Smooth Transitionsin Time Series
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Long memory and nonlinearity are two key features of some macroeconomic time series which are characterized
by persistent shocks that seem to rise faster during recession than it falls during expansion. A variant of
nonlinear time series model together with long memory are used to examine these features in inflation series for
three economies. The results which compares favourably with that of van Dijk et al. (2002) elicit some
interesting attributes of inflation in the devel oped and developing economies.
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1. Introduction

The era of nonlinear modelling has come to compténimear modelling in financial or
econometric time series. This is due to the faat thany real world problems do not satisfy the
assumptions of linearity and/or stationarity. Theessical theory of stationarity and linearity may
not apply to some economic, finance and macroecanearies because they consider series at
its level, I (0); first order integrated serie$(1) as well as higher order integrated series (Box

and Jenkins, 1976). Hassler and Wolters (1995)idered a case of long memorly(,0< d< 0.5)

for inflation data from five industrialized courgs and found that the series are all within the
long memory range.

The nonlinearity property of economic series cao dle justified by the existence of asymmetry
in inflation’s dynamics (Mourellet al., 2011). In order to consider these possibldinearities,

it is necessary to have econometric models thaalaleeto generate different dynamics according
to the business cycle phase. (see Granger andvirea&4.993); Terasvirta (1994)). van Digt

al. (2002) present the modelling cycle for speatiitn of smooth transition autoregressive
(STAR) model which include estimation of differemgi parameter, testing for nonlinearity,
parameter estimation and model adequacy testheitdse where the transition function is the
logistic function and applied this on US monthlyeamployment rate. Smallwood (2005) and
Boutaharet al. (2008) extend these results to the fractignallegrated STAR (FISTAR) model
with an exponential transition function. The models applied to measure the purchasing power
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by considering the real exchange rate data fortyveountries. This model is still new and has to
be tried beyond its applicability to exchange rates

This paper therefore seeks to examine the dynaamdsapplication of fractionally integrated
logistic STAR (FILSTAR) model on inflation rates twia view to obtaining better parameter
estimates and reliable forecasts. The remainingiosec of the paper are then organized as
follows: Section 2 gives the general review of HETAR model and the linearity tests. Section
3 discusses the estimation of the model; Sectipredents the results of the analysis and Section
5 gives the conclusion.

2. TheFISTAR Model Specification

A Fractionally Integrated (FI) time series procéss},t=1,...T is considered as

(1-B)' X, =y, 1)

WhereB is the backward shift operatatjs the non-integer fractional differencing paraenetnd
y,iS a covariance-stationary process. For fractignategrated process in (1), the integration
parameterd assumes values within the stationary and invertiblege —0.5<d < 0.5(Sowell,
1992a; Mayoral, 2007).Fab<d < 0.5, X, is a stationary long memory process in the semeste t
autocorrelations are not absolutely summable bilteraat a much slower hyperbolic rate. It
exhibits nonstationary processofs<d < 1.

Applying the Maclaurin’s series expansion aroBnd0, the fractional difference operator is
expanded as,

(1—B)"=1—o||3—M i r(d*i) g )
2! = (-d)r(j+1)
where the Euler gamma function,
z):jsz‘le'sds:(z—l)! z2>0 (3)
0

Based on (2) and (1), the fractionally integratddAB (FISTAR) model of ordep is expressed
as,

: r( + ) ~
2 B'X, =y,

=r(-
I (1= F (s:1.0)) + BIPF (s:y.0) + &

U

wherg =1,2,...T, yt (1 Vic1yes ,yt_p)', Q :(gqo,qql,...,gqp) andi=1,2. The ¢,is assumed to be a
difference sequence distributed with E(st|Qt_1) =0 and E(gt2|Qt_l) = g2 with
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Qi = Vit Y20 Yar(pmg) Yip representing the past history of the time sefeiowing Terasvirta
(1994), the transition variablg is assumed to be a lagged endogenous variabtastsa=y,
for certain integed<I| < p. At point |, nonlinearity is sharper. For the case where 12 or
autoregressive parameters determine the lineargbate STAR model, the inequality> p
holds. In the general FISTAR model in (4) above, tfansition functiorF(s;y, c) is assumed to
be either of logistic or exponential form (Tera&jrl994) as given below:

F(a:y.c)=l+exp(_1}/(s_c)), y>0 (5)
F(st;y,c):l—exp(—y(St—C)z), y>C (6)

In that case, using either (5) or (6) in the FISTARdel in (4) leads to fractionally integrated
logistic STAR (FILSTAR) and fractionally integrateskponential STAR (FIESTAR) models
respectively. They is the slope parameter andthe intercept in the transition function. In the
FILSTAR and FIESTAR models mentioned above, itleac that the models reduces to linear
autoregressive fractionally integrated (ARFI) ofder p when the transition function,
F(s:y.c)=0 or 1, that is shifting between two extreme linszgimes after staying in nonlinear

region for some time. The fractional paramelethe autoregressive parametggsand nonlinear
parametersy and c make the FISTAR model potentially useful for captgrboth long memory
and nonlinear smooth transition features of thets@aries X, (Boutaharet al., 2008).

STAR modelling approach of Terasvirta (1994) hasrbmodified to capture our specification
procedure for FISTAR, as it is proposed by van Rijlal. (2002):
1. Specify a linear ARFI) model by selecting the autoregressive onodryy means of
Akaike and Schwarz information criteria (Akaike,78%nd Schwarz, 1978).
2. Test the null hypothesis of linearity against thieraative of a FISTAR model.
3. Specify the model STAR model by choosing betwees thio competing transition
functions.
4. Estimate the parameters in the specified FISTAReahod
5. Evaluate the estimated model using misspecificatests (no residual autocorrelation,
serial correlation, normality test, ARCH test artldens).

Terasvirta (1994) follows the approach of Luukkgn&aikkonen and Terasvirta (1988) in
replacing the transition functicm(a;y,c)with a suitable Taylor series approximation abgeto
and test linearity by means of a Lagrange multiglig) statistic. Luukkoneret al. (1988) then
consider testing the null hypothesdts, : y =0 of linearity against the alternative of logistic &H

(LSTAR) nonlinearity by using the LSTAR function.h& third order Taylor's series
approximation of the logistic model is then givenaauxiliary regression model,

Y =@9" + BI7s + BITS + BT+ & @)
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whereg =(,3,1,...,,Bip)',i =1,2,3 are functions of the parametegsg ,y and c. The null hypothesis

then becomed,: 4 =4,=4,=0, which implies the selection of linear model. Téygproach of
Terasvirta (1994) is to specify the model basethemested hypotheses:

Ho: ;=0

Ho, 1B, =0|B; = 0Hgz: 3, = 0|8, = B, = 0(8)

which is supported by Escribano and Jorda (200hjs $equence of hypotheses implies that
rejection ofH,; suggests acceptance of LSTAR model. Also, rejeatioH,is an acceptance of

exponential STAR (ESTAR) model. Lastly, rejectioh 8., implies the selection of LSTAR
model.

Analytically, the test procedures follow:

1. Regressing,on{Ly,;;j=12...,p}to formé, (t=1,2,...T) and computing the residual
T
sum of squaressR, = &;
t=1

2. regressing, on {1y .y.s,i=12..pk= 1280 form the residualss (t=1,.2,..T)
T
and SR => &*and
t=1

(SSR,-SR)/3(p+1)
SR, /(T -4(p+1)

3. computing the test statistie = and F = F3(p+1), T-4(p+1)

3. Estimation of FISTAR Parameters

The estimation of FISTAR model starts by estimating fractional difference parameter in the

series. This is achieved using Hurst (1951) by asing the Hurst coefficient. He used the non-

parametric approach by employing a rescaled sta{RtS) defined as:
R/S:j/sr(q)(srigé(xj—X)—Kimry;;(xj—X)J 9)

whereS; is the MLE estimate of standard deviation from dinseries, X;. Then,
Sl_(q):Sr+2in (a)y, and w, (q) =1~ j/(a+1) such thatq<T (Lo, 1991).The Hurst coefficient,
=1

H is then estimated by,

1
log(T
The fractional differencing parametelis then obtained as,

A~

d=H-05. (11)

H =

log(R/S). (10)

~—r



CBN Journal of Applied Satistics Vol. 2 No.1 5

The approximate values of can be obtained in the time domain as in Sow&924, b). The
time domain approach follows the Binomial Theorepresentation ofl- B)d. This implies that

y, IS approximated by usin@ estimated by the Hurst estimation approach andurcated
fractionally differenced series is given as,

e I'(—&+j) 12
Yi _;mxt—j ( )
i ( c]+t+k) (13)

From (12), itis clear to seX,_; =0 for t - j outside of the sampl&,

The second transformation approach uses the fregmain approach of Geweke and Porter-
Hudak (1983). Here, the Fourier transform of theesbed seriesX, is pre-multiplied by the

Fourier transform of the fractional differencingeogtor based ord, and then compute the
inverse Fourier transform. The final series obtilows an autoregressive moving average
(ARMA (p,q)) process.

According to van Dijk et. al. (2002), after theiesttion of the fractional difference parameter,
all the remaining parameters in the STAR modelemtanated together. Beran (1995) suggests
approximate maximum likelihood (AML) estimator famvertible and possible nonstationary
autoregressive fractionally integrated moving ageréARFIMA) model which allows for regime
switching autoregressive dynamics. This estimdien minimizes the sum of squared residual
of the STAR model as,

S((q,(ﬂz,y,C):ZEtz (ﬂ'%,%c)- (14)

We now consider the choice of appropriate startialyie parameters and the estimation of the
smoothness parameter in the transition functiore @stimation procedure can be simplified by
concentrating the sum of squares function sincegpttameters/ andcin the transition function

imply STAR model of parameterg and ¢, and this makes the FISTAR model linear in the
remaining parameters (Leybourme al. (1998),van Dijk et al. (2002)). Then, estimates

o=(d.4) can be obtained by ordinary least squares (OLS) as

g
X PRV

o(y.c)=—2 , (15)

z (p)(y’ )yt(p)(y,c)

t=1

wherey® (y.c) =| %/ (1-F (s:¥.c) %\PF v c)] and the notationp(y,c)is used to indicate that
the estimate ofis conditional upop and c. Thus, the sum of squares functiQy (¢) can be
concentrated with respect tgand ¢, as,
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. A 2
Q=Y -0 e 7 (v.c) | (16)
t=1

andQy (y,c) will be minimized with respect to parametgrand conly. The estimate of is very
difficult to obtain when it is large because itega value makes the STAR model to be similar to
threshold autoregressive (TAR) model as the triamsfunction, F(s;y,c)comes close to a step
function and this function is then standardized.obtain an accurate estimate, there should be
many observationss in the neighbourhood of and this implies small deviation. Sensible
starting value for the nonlinear optimization ok tliSTAR model can easily be obtained by
considering a two dimensional grid search gvendc. Then for any set of the two values

(AJ-C,A{ ) the parameter vector(ai,¢2)are then estimated through ordinary least squaesS).

The outcome of this is a set of estimal(q?@,(}f, ;70,60). Practically, most estimation software for
STAR modelling are designed to follow the spectima,

Y =d%” +(@-a) YPF (sipc)+& (17)
where the nonlinear part is on one side of the hode

4, Data Analysisand Results

The monthly macroeconomic time series data ontioflaare sourced variously from Federal
Reserve Bank of St. Louis (US Inflation data), Naél Bureau of Statistics (Nigerian Inflation
data) and Office of National Statistics (UK Inflati data). These series range from January 1991
to December 2009T(= 228). These data are large enough to adjustherldg operations
performed during model specification and estimatireliminary analyses have been performed
using EViews 5 software from Quantitative Micro 8Badre, LLC. Smooth Transition Regression
(STR) analysis is performed using the R-STAR cooted package available through R
Development Core Team (2009) for the analysis ofinear time series (Balcilar, 2008).

Table 1. Descriptive Statisticson Time Series

Statistics Nigeria Inflation Series US Inflationries UK Inflation Series
Minimum 0.90 -2.10 0.50
Maximum 78.50 5.65 8.50
Mean 22.020 2.650 2.351

Std. Dev. 19.856 1.179 1.574
Skewness 1.362 -0.867 2.252
Kurtosis 3.57: 5.85¢ 8.06:
Jarque-Bera 73.596 105.957 436.189
Probability 0.0000 0.0000 0.0000

Table 1 shows the significance of the Jarque-Bestadf normality at 5% level for inflation series
in Nigeria (NIIR), US (USIR) and the UK (UKIR) whicimplies that inflation rates are not
normally distributed. Nigerian inflation rates eoas high as 78.50 between 1995 and 1996.The
minimum inflation rate was experienced in 2000. B¥& UK displayed fair level of stable
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inflation between 1991and 2008. The time plotstyedisplay asymmetric behaviours and high
persistence of inflation over the years and thia @ccordance to van Digt al. (2002).
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Fig. 1. Time Plots of Inflation Rates

Probing further into the dynamics of stationarigsbd on augmented Dickey Fuller (ADF) unit
root tests which has the null hypothesis of unittrdhe results of the ADF test indicate rejection
of this null hypothesis at 1, 5 and 10% for Nigeaiad US inflation series. UK inflation is
stationary at 5 and 10% level. The ADF test is zoréd using the KPSS test of long memory as
reported jointly with ADF test in Table 1. This tdgs been applied in Lee and Schmidt (1996)
to test for stationarity in long memory range. #shthe null hypothesis of series stationarity
against long memory. Subjection of our inflatiorrieg to KPSS shows rejection of null
hypothesis. Therefore, long memory is confirmethminflation series.

Table 2: Stationarity Testson Inflation Time Series

Nigerian Inflation Series(NIIR)  US Inflation Sesi€USIR) | UK Inflation Series (UKIR
Test ADF KPSS ADF KPSS ADF KPSS
Statistic -3.522 0.752 -4.589 0.737 -3.055 1.212
1% -3.459 0.739 -3.459 0.739 | -3.459 0.739
5% -2.874 (0.0083) 0.463 -2.874 (0.0002) 0.463 _2'874(0.0083) 0.463
10% -2.574 0.347 -2.574 0.347 -2.574 0.347

Since fractional differencing is possible in thélation series based on stationarity tests, Table
3then shows the estimates of the fractional diffeeeparameter computed after Hurst (1951).
The fractional difference estimates are actuallyomy memory range. The estimates of 0.3289



8 On Fractionally Integrated Logistic Smooth Transitionsin Time Series Shittu and Yaya

reported for Nigeria is another indication of irese in the inflation rate as compared with US
and UK inflation rates.

Table 3: Estimation of Fractional Difference Parameters
Non-Parametric Approach

Nigerian Inflation | US Inflation UK Inflation
_ Series (NIIR Series (USIE__| Series (UKIR
d 0.3289 0.1542 0.2819
RIS (90.0325) (34.8870) (69.7733)

The series are then fractionally differenced basedhe estimates in Table 3 to have “pure”
stationary series. The transformed series, as cbjeto stationarity tests in Table 4 give
acceptance of null hypothesis of stationarity ofS&Ptest as against the alternative hypothesis.
Fractional differencing actually removed long meyeifects in the series.

Table 4: Stationarity Testson Fractionally Differenced Time Series

Nigerian Inflation Series (NIIR) US Inflation SeriddSIR) UK Inflation Series (UKIR)
Test ADF KPSS ADF KPSS ADF KPSS
Satistic -3.122 0.416 -3.186 0.1639 -6.046 0.2543
1% -3.459 0.739 -3.459 0.739 -3.459 0.739
5% -2.874 (0.0264) 0.463 -2.874 (0.0222) 0.463 -2.874 (0.0000) 0.463
10% -2.57¢ 0.347 -2.57¢ 0.347 -2.57¢ 0.347

Modelling cycle of FISTAR model continues by fitjiinear AR models to the inflation series.
Optimal models were obtained based on minimum wabfeAlIC and SIC. So, AR (2), AR (4)
and AR (2) models are optimal models for Nigeri&g Bnd UK inflation series respectively.
Table 5 shows the result of the first stage in maar STAR testing. Nonlinearity is found to be
sharper at different lagss 4, | =3 and| =1for Nigerian, US and UK inflation series. These are
determined as least significant points x| < por | > p.Note that this is determined based on
| > p, that is certain point outside the model lags. IMear smooth transitions are tested in these
sharper points. The test results as given in Talsleows at least the significance of one of the
based on the auxiliary regression in (7) which nsimdication that the three inflation series
exhibit nonlinear smooth transition autoregressigbaviour.

Table 5. Determination of the Transition Variable, s =y,

Nigeria Inflation Series US Inflation Series UKlation Series

Dela 1 2 3 4 5 1 2 3 4 1 2 3 4

Prob | 0.013 0.010 0.007 0.005 0.007| 0.000 0.000 0.000 0.000| 0.224 0.318 0.327 0.418

Based on the nested hypothesis in (8), LSTAR moaledsspecified for the three inflation rates
unlike ESTAR model specified for exchange rateqBoutahar, 2008). The specification of
LSTAR model for inflation series support the fawtinflation series are assymetric.
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Table 6: STAR Nonlinearity Test and Model Specification

Nigeria Inflation Serie US Inflation Serie UK Inflation Serie:

B 1 2 3 1 2 3 1 2 3

Prob.. | 0.37617 0.00094216 0.43241 | 0.031438 8.34E-07 0.00019 | 0.60882 0.69793 0.03607

Model LSTAR LSTAR LSTAR

Estimation results are presented in Tables 7-9.eNmibset of the insignificant nonlinear
parameters cannot be taken in the RSTAR contribpde#fage for R software. So, the STAR and
FISTAR models presented are optimal.

Table 7: Estimated LSTAR Model for Nigerian Inflation Rates

Model AR ARFI LSTAR FILSTAR
Estimato | Estimate | Prob Estimate | Prob Estimate | Prob Estimate | Prob
a2 21.65910] 0.00000 1.64978 0.0000 0.23993 0.0p01  0.0B211 04513
0
a 1.9354¢ | 0.0000( | -0.4820< | 0.000: | 1.9817" | 0.000( | 1.5811! | 0.000
. 1
Linear part é{ -0.94128| 0.00005 -0.18114 0.0080 -1.00173 0.0p00 -0.32336 0[0538
2
~ -0.26088 0.003%
s
2 2.7947. | 0.039¢ | 1.6574¢| 0.296:
0
2 -0.03051| 0.0309 -0.64939 0.085
1
- 0.17342 0.7273
b,
- 0.95191] 0.0324
Nonlinear part %s
P - -0.67563 0.0014
By
J 2.92593| 0.1881 10.98377 0.32b1
& 43.8851: | 0.000( | 15.1018! | 0.000¢
i 4 4
AIC 332.0028 310.4322 300.2108 299.1587
sc 342.290: 321.562: 324.061 336.686!
Diagnostictests | 0.9994 0.9959 0.9995 0.9963
ARCH-LM | 05657 00454  1.8344 0.0177 2.08314 0.00150 3.43958 0/0650

In this Table, the point estimates of slope paramgt: 2.9259%qr | STAR and? =10.9837 g5,
FISTAR models indicate that the transition betwtentwo regimes of STAR model is slow and

fast. Fractional integration, in fact led to impealfit as indicated in the estimates Bf.This
implies that ARFI and FISTAR models are preferredAR and STAR models respectively but
the introduction of FI does not lead to improvariithe FISTAR model (van Dijk et al., 2002).
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Table8: Estimated LSTAR Model for US Inflation Rates

Model AR ARFI LSTAR FILSTAR
Estimator | Estimates Prob Estimates Prop. Estimak®b. Estimates Prob.
éf 2.7272% | 0.000( 1.2478( | 0.000( 0.1684: | 0.137( 0.0108¢ | 0.606¢
0
(é 1.4307:| 0.000( | -0.5473( | 0.000( | 1.2860¢ | 0.000C | 1.1647 | 0.000(
1
Linear part ¢A12 -0.73275| 0.000( 0.17336 0.0113 -0.52379 0.0p00 -0.49817 0/0000
él 0.36304| 0.0024 0.17673 0.0239 0.24095 0.0084
3
- -0.1460( | 0.039}
A
é 5.36344| 0.0814§ -1.67135 0.3084
0
(A@ 1.13672| 0.0443 0.86859 0.3403
1
- -2.2412: | 0.012:
Nonlinear part %
P f/ 7.67672| 0.527( 6.05677 0.4182
¢ 4.90000| 0.000( 1.64402 0.0000
|A 3 3
AlC 206.8093 200.4433 179.6015 186.8999
SC 223.9560 213.4328 210.3063 214.2287
Diagnostictesty g 0.895: 0.822: 0.906° 0.838:
ARCH-LM 1.9750| 0.0118 1.5736 0.0196 2.1640 0.0]42 43252 0.0377

Table 8 also shows the estimated slope paramétgrs 8.67672for LSTAR andj = 6.05677 for
FISTAR models indicating that the transition betwele two regimes of STAR model is slow.
The values of the slope parameters are closed d¢b ether because of small value of the
difference parameterj =0.154z. Also, FI led to improved fit but STAR model isegperred to
FISTAR model.

From Table 9, value of the slope parameter drogped j =33.780C to j=6.05677indicating
fast to slow smooth transitioning from one regiroethe other.Fl also improved the model fit
from AR and STAR to ARFI and FISTAR models respesy.

Conclusion

This paper has considered a model proposed in VgketDal. (2002) to model macro
econometric time series that is asymmetric. Theehdfound to be able to describe both long
memory and nonlinearity through fractional integmat and smooth transition modelling.
Inflation dynamics display high persistence whishan evidence of long memory. Stationary
time series models can be improved by fractionaliggrating the series. Also, time series model
can be improved upon by considering and modellioglinearity in the series. We would have
expected FILSTAR model to be the better one ouheffour models for each of the inflation
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series but this is not the case for the three sefikis indicates the serious competition arising
between fractional integration and nonlinearitysefies.

Table9: Estimated LSTAR Model for UK Inflation Rates

Model AR ARFI LSTAR FILSTAR
Estimator Estimates Prob. Estimates Praop. EstimatBsob. Estimates Prob.
2 3.28516. | 0.006" 0.13310( | 0.016< | 0.0108¢ | 0.606¢
0
a 1.12114| 0.0000 0.84805 0.0000 1.0600 0.0p00  1.16477 00000
. 1
Linear part é{ -0.1355; | 0.044: -0.1354( | 0.035: | -0.4981" | 0.000(
2
~ 0.24095/ 0.0084
A
2 159100 05414 -1.67195 0.3084
0
2 -0.184301 | 0.570¢ | 0.8685¢ | 0.340:
1
Nonlinear part 7 33.7800| 1.0000 6.05677 0.4182
& 6.02500| 1.0000 1.64402 0.0000
i 1 1
AIC 137.9201 197.5456 129.4520 186.8999
sc 148.2081 201.0211 153.3958 214.2287
Diagnostictests | 0.956¢ 0.833 0.957: 0.838:
ARCH-LM | 0.0003| 0.0989  0.0059 0.0939 0.05279 0.0818 1.70649 0.0193

Future research work should consider forecastsopadance of these models. Fractional
integration can also be combined with some othatlinear time series models in order to
confirm the inability Fl-nonlinear model to givedidit. With this, the dominant feature between
long memory and nonlinearity may be assessed.
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